This article was downloaded by: [Tomsk State University of Control Systems and Radio]

On: 21 February 2013, At: 10:33

Publisher: Taylor & Francis

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH,

UK

Molecular Crystals and Liquid Crystals

Publication details, including instructions for authors and subscription information: http://www.tandfonline.com/loi/gmcl16

Proton Dipolar Spin-lattice Relaxation in the Smectic Phases of TBBA

R. Y. Dong ^a , J. S. Lewis ^b , E. Tomchuk ^b , J. J. Visintainer ^d & F. Bock ^c

^a Department of Physics, Astronomy, Brandon University, Brandon, Manitoba, Canada, R7A 6A9

b Department of Physics, University of Winnipeg, Winnipeg, Manitoba, Canada, R3B 2E9

^c Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, Canada, R3T 2N2

^d The Goodyear Tire & Rubber Company, Research Division, 142 Goodyear Boulevard, Akron, OH, 44316 Version of record first published: 17 Oct 2011.

To cite this article: R. Y. Dong , J. S. Lewis , E. Tomchuk , J. J. Visintainer & E. Bock (1983): Proton Dipolar Spin-lattice Relaxation in the Smectic Phases of TBBA, Molecular Crystals and Liquid Crystals, 98:1, 139-147

To link to this article: http://dx.doi.org/10.1080/00268948308073469

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.tandfonline.com/page/terms-and-conditions

This article may be used for research, teaching, and private study purposes. Any substantial or systematic reproduction, redistribution, reselling, loan,

sub-licensing, systematic supply, or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae, and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand, or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

Mol. Cryst. Liq. Cryst., 1983, Vol. 98, pp. 139-147 0026-8941/83/9804-0139/\$18.50/0
© 1983 Gordon and Breach, Science Publishers, Inc. Printed in the United States of America

Proton Dipolar Spin-lattice Relaxation in the Smectic Phases of TBBA[†]

R. Y. DONG

Department of Physics and Astronomy, Brandon University, Brandon, Manitoba, Canada R7A 6A9

and

J.S. LEWIS and E. TOMCHUK

Department of Physics, University of Winnipeg, Winnipeg, Manitoba, Canada R3B 2E9

and

J. J. VISINTAINER* and E. BOCK

Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, Canada R3T 2N2

(Received January 14, 1983)

The proton dipolar spin-lattice relaxation time T_{ID} was measured at several Larmor frequencies in the various smectic phases of the liquid crystal terephthal-bis-butylaniline (TBBA) as a function of temperature and orientation of the sample in an external magnetic field. The angular dependent T_{ID} measurements are used to determine the importance of orientational order director fluctuations (ODF) in the dipolar field of the smectic phases of TBBA. In particular, the T_{ID}^{-1} angular dependence in the S_A phase is different from that in the S_C and S_G phases. This contrasts sharply with the T_{ID}^{-1} angular dependence in these phases which are all similar.

INTRODUCTION

Proton dipolar spin-lattice relaxation time (T_{1D}) measurements have been used¹⁻⁴ to elucidate the abrupt change in molecular self-diffusion within the

Work supported by the Natural Sciences and Engineering Research Council of Canada.

†Present address: The Goodyear Tire & Rubber Company, Research Division, 142 Goodyear Boulevard, Akron, OH 44316.

layers of smectogens owing to the onset of two-dimensional order within each layer from hexagonal and/or herringbone packings. Thus far only a few angular dependent studies of $T_{1D}^{1.6.7}$ have been reported, and it is not clear to what extent orientational order director fluctuations (ODF) relax the proton dipolar order in "true" liquid crystalline smectics such as smectic A (S_A) and C (S_C) phases. Recently one of us has shown that the T_{1D} angular dependence in the S_A and chiral smectic C* phases of a ferroelectric liquid crystal (DOBAMBC) can be interpreted in terms of the angular dependent functions characteristic to ODF. We found that such an interpretation is possible for the T_{1D} angular dependence in the S_A and S_C phases of terephthal-bis-butylaniline (TBBA). We report here the temperature dependence of T_{1D} and its angular dependence in the S_A , S_C and S_G phases of TBBA at several Larmor frequencies.

THEORY

In the weak collision limit, the dipolar spin-lattice relaxation time can be written¹⁰ as

$$T_{1D}^{-1} = C_0 J_0(0) + C_1 J_1(\omega) + C_2 J_2(2\omega) \tag{1}$$

where the spectral densities $J_p(p\omega)$ involve correlation functions of the well known angular part of the magnetic dipole interaction between a spin $\frac{1}{2}$ pair and the constants C_0 , C_1 and C_2 are of the same order of magnitude. Modulations of the magnetic dipole interaction by ODF, the smectic order and a coupling between them produce a complicated expression for J_p ($p\omega$) in the S_A phase. However, the expression simplifies under certain limit to

$$J_p(p\omega) = f_p(\Delta)S^2 \frac{kT}{2\sqrt{2\pi}} \sum_{\alpha=1}^2 \frac{1}{K_\alpha} \sqrt{\frac{\eta_\alpha}{K_3}} \frac{1}{\sqrt{p\omega}}$$
 (2)

where S is the nematic order parameter; K_1 , K_2 and K_3 are the splay, twist and bend elastic constants (with $K_2 = \tilde{K}_2$ and $K_3 = \tilde{K}_3$ in S_A phase), respectively; η_{α} are the corresponding viscosities; $f_p(\Delta)$, the angular dependent functions are given by

$$f_0(\Delta) = 18(\cos^2 \Delta - \cos^4 \Delta)$$

$$f_1(\Delta) = \frac{1}{2}(1 - 3\cos^2 \Delta + 4\cos^4 \Delta)$$

$$f_2(\Delta) = 2(1 - \cos^4 \Delta)$$
(3)

and Δ is the angle between the director and the external field. Blinc *et al.*, reported that in the fast motion limit and with two spin approximation, the

dipolar spin-lattice relaxation rate due to ODF has the following angular dependence:

$$T_{1D}^{-1} \propto J_1(\omega) \propto f_1(\Delta)$$
 (4)

in the smectic A phase of TBBA. This corresponds to setting $C_0 = C_2 = 0$ in Eq. 1, but fails to explain the T_{1D} angular dependence in the S_C phase¹¹ of TBBA and the S_C^* phase⁶ of DOBAMBC. This is because the T_{1D} angular dependence in the S_A phase is different from that in the S_C and S_G phases. Now C_2 appears to be zero in Eq. 1 because of the dissimilarity between the T_1 and T_{1D} angular dependencies in these smectic phases. In the S_A phase, the T_1 angular dependence¹ is given by

$$T_1^{-1} = Ag(\Delta) + B \tag{5}$$

where the isotropic B term is added to account for relaxation mechanisms other than ODF and $g(\Delta) = f_1(\Delta) + \frac{1}{\sqrt{2}}f_2(\Delta)$, while the T_{1D} angular dependence is written⁶ as

$$T_{1D}^{-1} = ah'(\Delta) + b \tag{6}$$

where $h'(\Delta) = V_{18} f_0(\Delta) + f_1(\Delta)$ and the isotropic b term is again added to account for relaxation mechanisms other than ODF (e.g., molecular self-diffusion and reorientations about the long molecular axis). A similar expression⁶ for T_{1D} in the S_C phase is

$$T_{1D}^{-1} = ah(\Delta) + b \tag{7}$$

where $h(\Delta) = \frac{1}{2} f_0(\Delta) + f_1(\Delta)$. The ratios C_0/C_1 for Eqs. 6 and 7 are those found to work in the S_A and S_C^* phases of DOBAMBC.

EXPERIMENTAL

The proton T_1 and T_{1D} measurements were made with a Bruker SXP4-100 MHz pulsed spectrometer. T_1 was measured by the standard 180° - τ -90° pulse sequence, while T_{1D} was determined by the well-known Jeener-Broekaert technique, using 90° (x)- 45° (y)- 45° (y) pulse sequence. All measurements were made by cooling the sample from the nematic phase and had an experimental error of $\pm 5\%$ for T_1 and $\pm 10\%$ for T_{1D} . The angular dependent studies were done by rotating the sample in the external magnetic field with an accuracy of $\pm 2^{\circ}$. In the S_C phase, care was taken to measure T_{1D} before molecules had a chance to follow the field. At 90 MHz, sample was reheated to nematic for alignment after each rotation in the S_C phase. There was difficulty in measuring T_{1D} at Δ near 90° in the S_C phase at this high field.

The liquid crystal TBBA was obtained commercially. All samples were sealed in a vacuum without further purification by the freeze-pump-thaw method. The temperatures of the sample were maintained by an air flow and measured with a copper-constantan thermocouple.

RESULTS AND DISCUSSIONS

Figure 1 shows a plot of proton T_{1D} versus the temperature at $\omega/2\pi = 90$, 60, 28, 15 and 12 MHz. Proton T_{1D} appears to exhibit a maximum (at ~190°C) within the S_A phase at the Larmor frequencies studied except at 90 MHz, the maximum shifts towards the N- S_A phase transition. Our T_1 data (not shown) at several frequencies all show a maximum at the N- S_A phase transition in agreement with Blinc et al. As expected, T_{1D} undergoes an abrupt drop at the S_C to S_G (tilted B) phase transition. This is due to pseudo-hexagonal packing of molecules within the layer. It is also observed that T_{1D} is frequency independent in the S_G , S_C and partly in the S_A phase (below 190°C). There is, however, a definite T_{1D} field dependence in the nematic phase of TBBA. This was used to argue that ODF is a relaxation mechanism for the dipolar spin system of nematogens. For direct comparison with the T_{1D} data, we present in Figure 2 the T_1 angular dependent

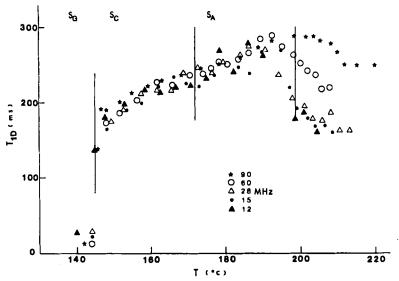


FIGURE 1 Plot of proton dipolar spin-lattice relaxation time T_{1D} versus temperature in TBBA at $\omega/2\pi = 90$, 60, 28, 15 and 12 MHz.

data at 60 and 15 MHz in the S_A phase (at 189°C). The solid curves are a least-squares fit to Eq. 5 with $A=0.14~\rm s^{-1}$ and $B=0.28~\rm s^{-1}$ at 60 MHz, and $A=0.23~\rm s^{-1}$ and $B=0.28~\rm s^{-1}$ at 15 MHz. The T_1 angular dependences of the S_C and S_G phases of TBBA^{1b} are similar. Figures 3 and

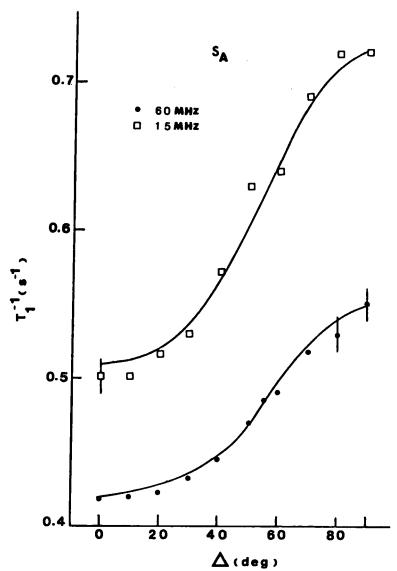


FIGURE 2 Plot of proton Zeeman spin-lattice relaxation rate versus the angle Δ in the S_A phase at 189°C. Solid curves are theoretical fit.

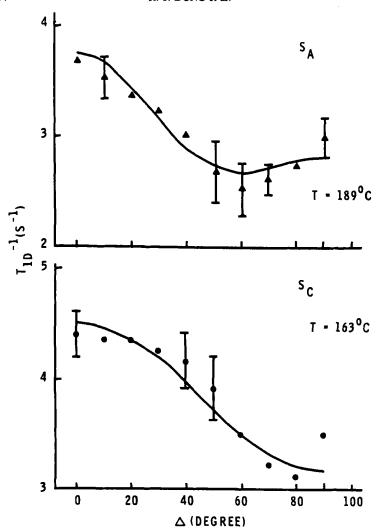


FIGURE 3 Plot of proton dipolar spin-lattice relaxation rate versus the angle Δ in the S_A and S_C phases at $\omega/2\pi = 90$ MHz. Solid curves are theoretical fit.

4 present the T_{1D} angular dependent data at 90 and 28 MHz, respectively, in the S_A and S_C phases of TBBA. Similar data was also obtained at 60 MHz in these smectic phases. One can conclude that the angular behavior of T_{1D} is independent of the Larmor frequency as expected, but is in sharp contrast with the angular behavior of T_1 (Figure 2). In the S_A phase (at 189°C), the T_{1D} angular dependent data is fitted by a least-squares regression program

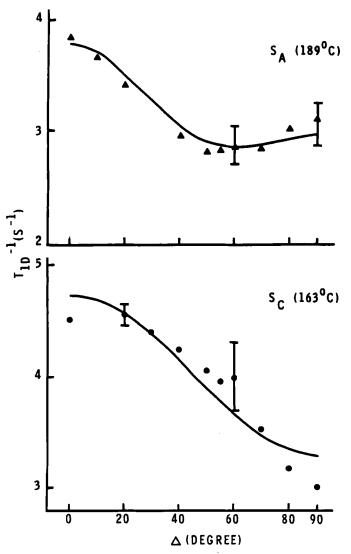


FIGURE 4 Same as Figure 3 at $\omega/2\pi = 28$ MHz.

to Eq. 6 as given by the solid curve with $a = 1.93 \text{ s}^{-1}$ and $b = 1.82 \text{ s}^{-1}$ at 90 MHz (Figure 3), and $a = 1.62 \text{ s}^{-1}$ and $b = 2.16 \text{ s}^{-1}$ at 28 MHz (Figure 4). In the S_C phase (at 163°C), the T_{1D} angular dependent data is fitted in the same manner to Eq. 7 as given by the solid curve with $a = 2.64 \text{ s}^{-1}$ and $b = 1.86 \text{ s}^{-1}$ at 90 MHz (Figure 3) and $a = 2.88 \text{ s}^{-1}$

and $b=1.86~{\rm s}^{-1}$ at 28 MHz (Figure 4). As can be seen from these figures, the fits are quite satisfactory, thereby supporting the ratio C_0/C_1 being V_{18} and V_{2} in the smectic A and C phases of TBBA, respectively. Furthermore, ODF contribute significantly to the relaxation rate of dipolar spin system in the S_A and S_C phases, being maximum (about 60% of the dipolar spin-lattice relaxation rate) at $\Delta=0$. In the S_G phase of TBBA, the T_{1D}^{-1} is independent of the angle Δ as shown in Figure 5 for several frequencies. This is consistent with the fact that molecular self-diffusion^{4,7} becomes the dominant relaxation mechanism for the dipolar order in the low symmetry smectic phases such as S_G and S_B . Moreover, the diffusive jumps are in the 'slow' motion regime in which Eq. 1 is not applicable. For the correlation

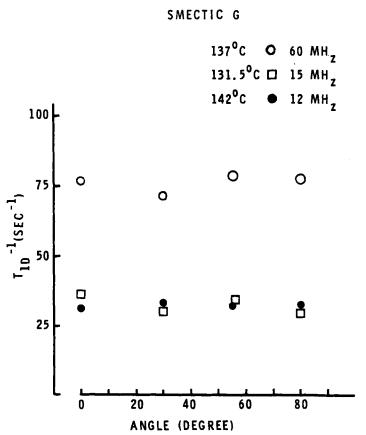


FIGURE 5 Plot of proton dipolar spin-lattice relaxation rate versus the angle Δ in the S_G phase at $\omega/2\pi=60$, 15 and 12 MHz.

time τ_c between two successive molecular jumps much longer than the spin-spin relaxation time T_2 , one can use

$$T_{1D}^{-1} = \frac{2(1-p)}{\tau_c} \tag{8}$$

as given by Slichter and Ailion¹³ where p is a geometrical factor. This enables one to estimate the self-diffusion constant in the S_G phase^{1a} $(D \le 10^{-10} \text{ cm}^2/\text{s})$ of TBBA.

SUMMARY

In both the S_A and S_C phases of TBBA, an angular dependence characteristic to ODF is observed for T_{1D}^{-1} . In both phases, ODF and diffusion each contribute approximately 50% to T_{1D}^{-1} . No angular dependence is observed for T_{1D}^{-1} in the S_G phase because the relaxation mechanism is mainly molecular self diffusion.

Acknowledgments

The financial support of the Natural Sciences and Engineering Research Council of Canada is gratefully acknowledged. We also thank Messrs. E. Samulaitis and K. Krebs for their technical assistance.

References

- (a) R. Blinc, M. Luzar, M. Vilfan and M. Burgar, J. Chem. Phys., 63, 3445 (1975);
 (b) R. Blinc, M. Luzar, M. Mali, R. Osredkar, J. Seliger and M. Vilfan, J. Phys. (Paris), Colloq., 37, C3-73 (1976).
- J. R. Owers-Bradley, I. E. Calder, J. B. Ketterson and W. P. Halperin, Mol. Cryst. Liq. Cryst., 76, 175 (1981).
- 3. R. Y. Dong, J. Mag. Reson., 48, 280 (1982).
- G. J. Krüger, H. Spiesecke, R. Van Steenwinkel and F. Noack, Mol. Cryst. Liq. Cryst., 40, 103 (1977).
- J. Doucet, in "The Molecular Physics of Liquid Crystals," edited by G. R. Luckhurst and G. W. Gray (Academic Press, London, 1979), chap. 14.
- 6. R. Y. Dong and J. Sandeman, J. Chem. Phys., 78, 4649 (1983).
- G. J. Krüger, H. Spiesecke and R. Van Steenwinkel, J. Phys. (Paris), Colloq., 37, C2-123 (1976).
- 8. P. Pincus, Solid State Commun., 7, 415 (1969).
- R. Y. Dong, M. Wiszniewska, E. Tomchuk and E. Bock, Mol. Cryst. Liq. Cryst., 27, 259 (1974).
- 10. R. Van Steenwinkel, Z. Naturforsch, 24a, 1526 (1969).
- J. J. Visintainer, R. Y. Dong, E. Bock and E. Tomchuk, Proc. 6th Int. Sym. Mag. Reson., Banff (1977), p. 215.
- 12. R. A. Wise, D. H. Smith and J. W. Doane, Phys. Rev., A7, 1366 (1973).
- 13. C. P. Slichter and D. Ailion, Phys. Rev., 135, 1099 (1964).